

UNIVERSITY OF LIFE SCIENCES "KING MIHAI I" FROM TIMIŞOARA "MULTIDISCIPLINARY CONFERENCE ON SUSTAINABLE DEVELOPMENT" 25 - 26 May 2023

"MULTIDISCIPLINARY CONFERENCE ON SUSTAINABLE DEVELOPMENT"

THE BIOLOGICAL POTENTIAL OF *CHELIDONIUM MAJUS L*. EXTRACT IN A-375 MALIGNANT MELANOMA CELLS

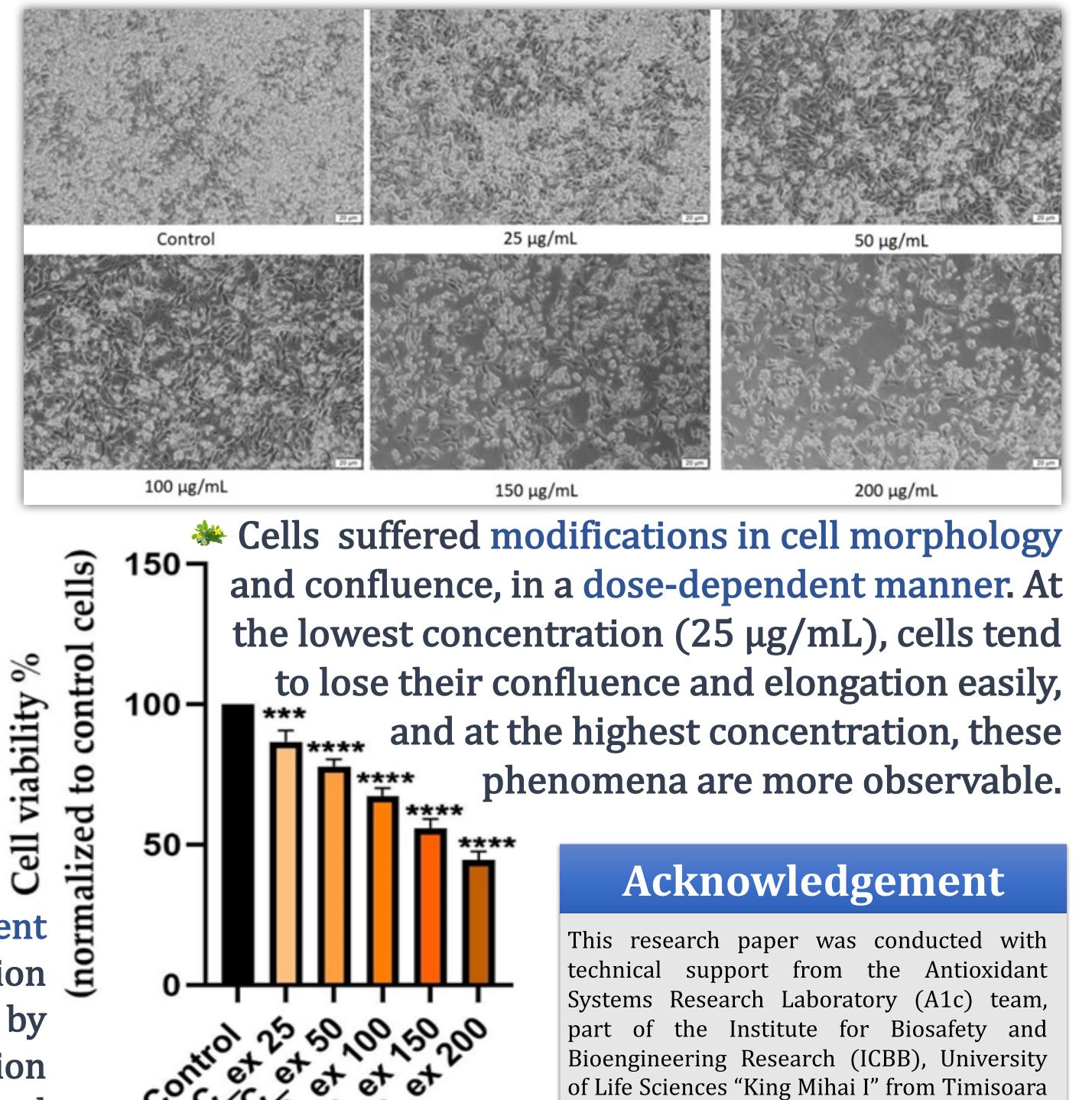
^{1,4}Românu Ramona, ³Anton Alina, ³Macasoi Ioana, ^{2,4}Tripon Maria Roberta, ³Dehelean Cristina, ^{2,4}Boldura Oana Maria, ^{1,4}Tulcan Camelia*

¹Faculty of Engineering and Applied Technologies, Life Sciences University "King Mihai I" from Timişoara, ²Faculty of Veterinary Medicine, Life Sciences University "King Mihai I" from Timişoara ³Victor Babeş University of Medicine and Pharmacy, Timişoara ⁴ULST Research Institute for Biosafety and Bioengineering

cameliatulcan@usvt.ro

INTRODUCTION

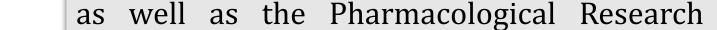
Medicinal plants are a continuous source of therapeutic solutions, some being well-known since ancient times, others being in a permanent research. Chelidonium majus L. (C. majus) is a representative of the Papaveracea family, being known under the name of greater celandine. In the literature it is mentioned that chelerythrine and sanguinarine are some of the most prominent alkaloids found in roots while chelidonine, coptisine, and berberine are usually found in the aerial parts of the plant. Sanguinarine was found one of the most potent antitumor agents, which is capable to intercalate strongly with DNA. Berberine was found to manifest antiproliferative properties in various cancer types and to induce apoptosis in vitro, in human cancer cells, such as pancreatic, breast, prostate, cervical, and lung.


THE AIM OF THE STUDY

was to assess the potential antitumor effects of *C. majus extracts* on human melanoma cells - A375 - and to evaluate it in terms of cell viability and morphology changes.

Materials and methods

Cells were cultured in their specific medium - DMEM, supplied with 10% FBS and 1% of penicillin/streptomycin mixture. Cell growth was carried out in a humidified incubator, following standard conditions: 5% CO2 and a temperature of 37 °C. Cells were morphologically observed using an IX73 inverted microscope.


Results and discussions

Viability test- MTT assay

- > (1) cells were cultured in 96-well plates;
- ➤ (2) after reaching the confluence, cells were incubated with five increasing concentrations of extract (25, 50, 100, 150, and 200µg/mL) 24 hours;
- ➤ (3) 10 µL/well of MTT solution (kit I) was added to each well, followed by a 3-hour incubation;
- ➤ (4) the formed formazan crystals were dissolved in 100 µL kit II, for 30 min, in the dark;
- ▶ (6) the reduced MTT was analyzed spectrophotometrically at 570 and using the Cytation 5 microplate reader.

The extract exerted a concentration-dependent cytotoxic effect. At the lowest concentration (25 ug/mL) - cell viability was reduced by approximately 87%, while at the highest concentration (200 ug/mL) the percentage of viable cells decreased

Center, Victor Babeş University of Medicine

- 0/0/0/

